1 changed files with 285 additions and 0 deletions
Split View
Diff Options
-
285abgabe6.cpp
@ -0,0 +1,285 @@ |
|||
//g++ abgabe6.cpp -std=c++14 -o abgabe6
|
|||
// ./abgabe6
|
|||
// Pauline Maas, Ariane Ufer
|
|||
|
|||
#include <stdlib.h>
|
|||
#include <stdio.h>
|
|||
#include <string.h>
|
|||
#include <ctype.h>
|
|||
#include <math.h>
|
|||
#include <complex>
|
|||
#include <vector>
|
|||
using namespace std; |
|||
#ifndef M_PI
|
|||
#define M_PI 3.14159265358979323846
|
|||
#endif
|
|||
typedef struct { |
|||
long n; |
|||
double b, a, beta, alpha; |
|||
double tmin, tmax,h,tl; |
|||
int m; |
|||
int sign; |
|||
} fft_param; |
|||
|
|||
|
|||
//Pseudo-Zufallszahlen-Generator
|
|||
//Part of a C-program for MT19937, with initialization improved 2002/1/26.
|
|||
//Coded by Takuji Nishimura and Makoto Matsumoto.
|
|||
|
|||
/* Period parameters */ |
|||
#define N 624
|
|||
#define M 397
|
|||
#define MATRIX_A 0x9908b0dfUL /* constant vector a */
|
|||
#define UPPER_MASK 0x80000000UL /* most significant w-r bits */
|
|||
#define LOWER_MASK 0x7fffffffUL /* least significant r bits */
|
|||
|
|||
static unsigned long mt[N]; /* the array for the state vector */ |
|||
static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */ |
|||
|
|||
/* initializes mt[N] with a seed */ |
|||
void init_genrand(unsigned long s) |
|||
{ |
|||
mt[0]= s & 0xffffffffUL; |
|||
for (mti=1; mti<N; mti++) { |
|||
mt[mti] = |
|||
(1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti); |
|||
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ |
|||
/* In the previous versions, MSBs of the seed affect */ |
|||
/* only MSBs of the array mt[]. */ |
|||
/* 2002/01/09 modified by Makoto Matsumoto */ |
|||
mt[mti] &= 0xffffffffUL; |
|||
/* for >32 bit machines */ |
|||
} |
|||
} |
|||
|
|||
/* initialize by an array with array-length */ |
|||
/* init_key is the array for initializing keys */ |
|||
/* key_length is its length */ |
|||
/* slight change for C++, 2004/2/26 */ |
|||
void init_by_array(unsigned long init_key[], int key_length) |
|||
{ |
|||
int i, j, k; |
|||
init_genrand(19650218UL); |
|||
i=1; j=0; |
|||
k = (N>key_length ? N : key_length); |
|||
for (; k; k--) { |
|||
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) |
|||
+ init_key[j] + j; /* non linear */ |
|||
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ |
|||
i++; j++; |
|||
if (i>=N) { mt[0] = mt[N-1]; i=1; } |
|||
if (j>=key_length) j=0; |
|||
} |
|||
for (k=N-1; k; k--) { |
|||
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) |
|||
- i; /* non linear */ |
|||
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ |
|||
i++; |
|||
if (i>=N) { mt[0] = mt[N-1]; i=1; } |
|||
} |
|||
|
|||
mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ |
|||
} |
|||
|
|||
/* generates a random number on [0,0xffffffff]-interval */ |
|||
unsigned long genrand_int32(void) |
|||
{ |
|||
unsigned long y; |
|||
static unsigned long mag01[2]={0x0UL, MATRIX_A}; |
|||
/* mag01[x] = x * MATRIX_A for x=0,1 */ |
|||
|
|||
if (mti >= N) { /* generate N words at one time */ |
|||
int kk; |
|||
|
|||
if (mti == N+1) /* if init_genrand() has not been called, */ |
|||
init_genrand(5489UL); /* a default initial seed is used */ |
|||
|
|||
for (kk=0;kk<N-M;kk++) { |
|||
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); |
|||
mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL]; |
|||
} |
|||
for (;kk<N-1;kk++) { |
|||
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); |
|||
mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL]; |
|||
} |
|||
y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK); |
|||
mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL]; |
|||
|
|||
mti = 0; |
|||
} |
|||
|
|||
y = mt[mti++]; |
|||
|
|||
/* Tempering */ |
|||
y ^= (y >> 11); |
|||
y ^= (y << 7) & 0x9d2c5680UL; |
|||
y ^= (y << 15) & 0xefc60000UL; |
|||
y ^= (y >> 18); |
|||
|
|||
return y; |
|||
} |
|||
|
|||
/* generates a random number on [0,1) with 53-bit resolution*/ |
|||
double genrand_res53(void) |
|||
{ |
|||
unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6; |
|||
return(a*67108864.0+b)*(1.0/9007199254740992.0); |
|||
} |
|||
// End of C-program for MT19937
|
|||
|
|||
|
|||
|
|||
|
|||
complex<double> expo(fft_param *fp,int k) { |
|||
int sign = fp->sign; |
|||
int n=fp->n; |
|||
return exp(sign*2.0 * M_PI * 1i* ((double)(k/n))); |
|||
|
|||
} |
|||
|
|||
vector<complex<double>> fourierTrafo(fft_param *fp, vector<complex<double>> x) { |
|||
long n = x.size(); //Länge des x vektors
|
|||
int sign=fp->sign; |
|||
vector<complex<double>> gerPkt(n / 2); //Vektoren um x in gerade und ungerade Teile aufzuteilen
|
|||
vector<complex<double>> ungerPkt(n / 2); //Haben dann Länge n/2
|
|||
|
|||
if (n == 1) { |
|||
|
|||
return x; |
|||
} else { |
|||
//Aufteilen
|
|||
for (int k = 0; k < n / 2; k++) { |
|||
gerPkt[k] = x[2 * k]; |
|||
ungerPkt[k] = x[2 * k + 1]; |
|||
} |
|||
|
|||
vector<complex<double>> ftger = fourierTrafo(fp, gerPkt); //rekursives Aufrufen der Funktion um weiter zu Teilen
|
|||
vector<complex<double>> ftunger = fourierTrafo(fp, ungerPkt); |
|||
vector<complex<double>> out(n); |
|||
|
|||
for (int k = 0; k < n / 2; k++) { |
|||
//In out ergebnis nach FFT routine Speichern
|
|||
if(sign==-1){ |
|||
out[k] = (ftger[k] + ftunger[k] * expo(fp,k)); |
|||
out[k + n / 2] = (ftger[k] - ftunger[k] *expo(fp,k)); |
|||
} |
|||
else{ |
|||
out[k] = (ftger[k] + ftunger[k] * expo(fp,k)); |
|||
out[k + n / 2] = (ftger[k] - ftunger[k] *expo(fp,k)); |
|||
} |
|||
} |
|||
|
|||
return out; |
|||
} |
|||
} |
|||
|
|||
vector<complex<double>> makeS(fft_param *fp){ |
|||
double h=fp->h; //Variabeln aus struct holen
|
|||
double tmax=fp->tmax; |
|||
double tmin=fp->tmin;; |
|||
double t; |
|||
double tl=fp->tl; |
|||
double alpha=fp->alpha; |
|||
int n=fp->n; |
|||
vector<complex<double>> s(n); //Vektor zum speichern von s
|
|||
for(int k=0;k<n;k++){ |
|||
t=tmin+k*h; |
|||
if (t-tl >= 0 && t-tl <= tmax){ |
|||
s[k]=sin(2*M_PI*alpha*(t-tl)); //s berechnen
|
|||
|
|||
} |
|||
else{ |
|||
s[k]=0; |
|||
} |
|||
|
|||
} |
|||
return s; |
|||
} |
|||
vector<complex<double>> makeE(fft_param *fp){ |
|||
double h=fp->h; //Variabeln aus struct holen
|
|||
double tmax=fp->tmax; |
|||
double tmin=fp->tmin; |
|||
double t; |
|||
double beta=fp->beta; |
|||
double tl=fp->tl; |
|||
double a=fp->a; |
|||
double b=fp->b; |
|||
int n=fp->n; |
|||
vector<complex<double>> e(n); //Vektor zum speichern von e
|
|||
vector<complex<double>> s=makeS(fp); //Vektor s wird benötigt
|
|||
//FILE *fp3 = fopen("H10_2_30.txt" ,"w");
|
|||
for(int k=0;k<n;k++){ |
|||
t=tmin+k*h; |
|||
e[k]=b*sin(2*M_PI*beta*t)+ 2*a*(genrand_res53()-0.5)+s[k]; //e berechnen
|
|||
//fprintf(fp3,"%f\t%f\n",t,pow(e[k].real(),2));
|
|||
//printf("%f\t%f\n",t,pow(e[k].real(),2));
|
|||
//printf("%f\t%f\t%f\n",t,e[k].real(),e[k].imag());
|
|||
} |
|||
//fclose(fp3);
|
|||
return e; |
|||
} |
|||
vector<complex<double>> aufgabe3 (fft_param *fp){ |
|||
double h=fp->h; //Varabeln aus Struct holen
|
|||
double tmin=fp->tmin; |
|||
double tmax=fp->tmax; |
|||
double t=tmin; |
|||
int n=fp->n; |
|||
vector<complex<double>> e=makeE(fp); //e und s berechnen
|
|||
vector<complex<double>> s=makeS(fp); |
|||
vector<complex<double>> Fe=fourierTrafo(fp,e); //e Fouriertransformieren
|
|||
|
|||
vector<complex<double>> Fs=fourierTrafo(fp,s); //s Fouriertransformieren
|
|||
vector<complex<double>> FFes(n); //Vektor machen zum speichern
|
|||
|
|||
for(int k=0;k<n;k++){ |
|||
//Hier Fouriertransformation von e mal Fouriertransformation von s komplex konjugiert berechnen
|
|||
FFes[k]=Fe[k]*conj(Fs[k]); |
|||
|
|||
} |
|||
fft_param fps=*fp; //Sign im struct ändern
|
|||
fps.sign=-1; |
|||
vector<complex<double>> FFFes=fourierTrafo(&fps, FFes); //Rücktransformation des Produkts
|
|||
return FFFes; |
|||
//init_genrand((long)seed);
|
|||
} |
|||
void plotAufgabe3(fft_param *fp){ |
|||
int n = fp->n; |
|||
double tmin=fp->tmin; |
|||
double h=fp->h; |
|||
vector<complex<double>> es = aufgabe3(fp); |
|||
FILE *fp4 =fopen("es4.csv","w"); |
|||
for (int k=0;k<n;k++){ |
|||
printf("%f\n", norm(es[k])); |
|||
|
|||
fprintf(fp4,"%f\t%f\n", tmin+k*h, norm(es[k])); |
|||
|
|||
} |
|||
|
|||
} |
|||
int main(){ |
|||
long seed = 57291; // beliebigen Wert gewählt
|
|||
init_genrand(seed); //rufe am Anfang mit einem festen Wert auf für reproduzierbare Ergebnise
|
|||
|
|||
|
|||
fft_param fp; |
|||
fp.n= pow(2,13); |
|||
fp.tmin=0; |
|||
fp.tmax = 100; |
|||
fp.h=(fp.tmax-fp.tmin)/fp.n; |
|||
fp.sign=1; |
|||
fp.alpha=10; |
|||
fp.beta=1; |
|||
fp.a=0.5; |
|||
fp.b=0.50; |
|||
fp.tl=5; |
|||
//test(&fp);
|
|||
plotAufgabe3(&fp); |
|||
//printf("%f\n",genrand_res53());
|
|||
|
|||
//H10.2
|
|||
fp.h=0.001; //Schrittweite der Zeit für Plot
|
|||
fp.n=100/0.001; // plotte e(t) bis für die Zeit tmin bis tmin + 100
|
|||
//makeE(&fp);
|
|||
|
|||
|
|||
} |
|||
Write
Preview
Loading…
Cancel
Save