You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

149 lines
3.5 KiB

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <complex>
#include<vector>
using namespace std;
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
typedef struct {
long N;
double b, a, beta, alpha;
double tmin, tmax,h,tl;
int m;
int sign;
} fft_param;
complex<double> expo(fft_param *fp,int k) {
int sign = fp->sign;
int N=fp->N;
return exp(sign*2.0 * M_PI * 1i* ((double)(k/N)));
}
vector<complex<double>> fourierTrafo(fft_param *fp, vector<complex<double>> x) {
long N = x.size();
int sign=fp->sign;
vector<complex<double>> gerPkt(N / 2);
vector<complex<double>> ungerPkt(N / 2);
if (N == 1) {
return x;
} else {
for (int k = 0; k < N / 2; k++) {
gerPkt[k] = x[2 * k];
ungerPkt[k] = x[2 * k + 1];
}
vector<complex<double>> ftger = fourierTrafo(fp, gerPkt);
vector<complex<double>> ftunger = fourierTrafo(fp, ungerPkt);
vector<complex<double>> out(N);
for (int k = 0; k < N / 2; k++) {
if(sign==-1){
out[k] = (ftger[k] + ftunger[k] * expo(fp,k));
out[k + N / 2] = (ftger[k] - ftunger[k] *expo(fp,k));
}
else{
out[k] = (ftger[k] + ftunger[k] * expo(fp,k));
out[k + N / 2] = (ftger[k] - ftunger[k] *expo(fp,k));
}
}
return out;
}
}
vector<complex<double>> test(fft_param *fp){
double h=fp->h;
double tmin=fp->tmin;
double tmax=fp->tmax;
double t=tmin;
int N=fp->N;
vector<complex<double>> x(N);
for(int k=0;k<N;k++){
x[k]=sin(tmin+k*h);
}
vector<complex<double>> out = fourierTrafo(fp, x);
fft_param n= *fp;
n.sign=-1;
vector<complex<double>> doppelout = fourierTrafo(&n, out);
FILE *fp2 = fopen("testFFT.csv" ,"w");
for(int k=0;k<N;k++){
fprintf(fp2,"%f\t%f\t%f\n",(tmin+k*h),x[k].real(), doppelout[k].real()/(double)N);
}
return x;
}
vector<complex<double>> makeS(fft_param *fp){
double h=fp->h;
double tmax=fp->tmax;
double tmin=0;
double t;
double tl=fp->tl;
double alpha=fp->alpha;
int N=fp->N;
vector<complex<double>> s(N);
for(int k=0;k<N;k++){
t=tmin+k*h;
s[k]=sin(2*M_PI*alpha*(t-tl));
}
return s;
}
vector<complex<double>> makeE(fft_param *fp){
double h=fp->h;
double tmax=fp->tmax;
double tmin=0;
double t;
double beta=fp->beta;
double tl=fp->tl;
double a=fp->a;
double b=fp->b;
int N=fp->N;
vector<complex<double>> e(N);
vector<complex<double>> s=makeS(fp);
for(int k=0;k<N;k++){
t=tmin+k*h;
e[k]=b*sin(2*M_PI*beta*t)+ 2*a*(rand()-0.5)+s[k];
//e[k]=b*sin(2*M_PI*beta*t)+s[k];
}
return e;
}
vector<complex<double>> aufgabe3 (fft_param *fp){
double h=fp->h;
double tmin=fp->tmin;
double tmax=fp->tmax;
double t=tmin;
int N=fp->N;
vector<complex<double>> e=makeE(fp);
vector<complex<double>> s=makeS(fp);
vector<complex<double>> Fe=fourierTrafo(fp,e);
fft_param fps=*fp;
fps.sign=-1;
vector<complex<double>> Fs=fourierTrafo(&fps,s);
vector<complex<double>> FFes(N);
for(int k=0;k<N;k++){
FFes[k]=Fe[k]*conj(Fs[k]);
}
vector<complex<double>> FFFes=fourierTrafo(fp, FFes);
return FFFes;
}
int main(){
fft_param fp;
fp.N= pow(2,13);
fp.tmin=0;
fp.tmax = 100;
fp.h=(fp.tmax-fp.tmin)/fp.N;
fp.sign=1;
test(&fp);
}